±¹¹® ÃÊ·Ï
º» ³í¹®¿¡¼´Â ±â¾÷ °íÀ¯ÀÇ ÀÌÀÍ»ý»ýÇÔ¼ö (earnings generating function) ¸¦ µµÀÔÇÏ¿© ¿¬¼ÓÇÔ¼ö ÇüÅÂÀÇ ±â¾÷°¡Ä¡Æò°¡ ¸ðÇüÀ» °³¹ßÇÏ¿´´Ù »õ·Î¿î ¸ðÇü¿¡¼ÀÇ ¿¬¼ÓÇÔ¼öÀû Ư¼ºÀº ÀÌÀÍ¿¡ ´ëÇÑ Áß°£ Á¤º¸ (¿¹, ºÐ±â ÀÌÀÍÁ¤º¸ ¶Ç´Â Áõ±ÇºÐ¼®°¡ ¿¹ÃøÄ¡) ¸¦ Áï½Ã ±â¾÷°¡Ä¡ Æò°¡¿¡ ¹Ý¿µÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ¶ÇÇÑ ÀüÅëÀû ÀÌ»êÇÔ¼ö (discrete-time ...
[´õº¸±â]
º» ³í¹®¿¡¼´Â ±â¾÷ °íÀ¯ÀÇ ÀÌÀÍ»ý»ýÇÔ¼ö (earnings generating function) ¸¦ µµÀÔÇÏ¿© ¿¬¼ÓÇÔ¼ö ÇüÅÂÀÇ ±â¾÷°¡Ä¡Æò°¡ ¸ðÇüÀ» °³¹ßÇÏ¿´´Ù »õ·Î¿î ¸ðÇü¿¡¼ÀÇ ¿¬¼ÓÇÔ¼öÀû Ư¼ºÀº ÀÌÀÍ¿¡ ´ëÇÑ Áß°£ Á¤º¸ (¿¹, ºÐ±â ÀÌÀÍÁ¤º¸ ¶Ç´Â Áõ±ÇºÐ¼®°¡ ¿¹ÃøÄ¡) ¸¦ Áï½Ã ±â¾÷°¡Ä¡ Æò°¡¿¡ ¹Ý¿µÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ¶ÇÇÑ ÀüÅëÀû ÀÌ»êÇÔ¼ö (discrete-time function) ÇüÅÂÀÇ ±â¾÷°¡Ä¡Æò°¡ ¸ðÇü¿¡¼´Â ³ªÅ¸³ªÁö ¾Ê´Â ÀÌÀÍ»ý¼ºÇÔ¼öÀÇ 1Â÷ µµÇÔ¼ö (ÇöÀçÀÇ ÀÌÀͺ¯ÈÀÇ ¹æÇâ) ¹× 2 Â÷ µµÇÔ¼ö (ÇöÀçÀÇ ÀÌÀͺ¯ÈÀÇ ¼Óµµ) ±×¸®°í ÀÌÀÍ»ý¼ºÇÔ¼ö¿¡ ÀÇÇÑ ¹Ì·¡ ÀÌÀÍÀÇ ¿¹»óº¯È (¿¹, ¹Ì·¡ ÃÖ´ë ¹× ÃÖ¼Ò ÀÌÀÍ, ±×¸®°í º¯µ¿¼º) ¿¡ ´ëÇÑ Á¤º¸¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ÀåÁ¡À» Á¦°øÇØ ÁØ´Ù. Çѱ¹Áõ±Ç°Å·¡¼Ò¿¡ »óÀåµÇ¾î ÀÖ´Â 12 ¿ù °á»ê¹ýÀÎÀÇ ¹Ý±âȸ°èÀÌÀÍ ¹× °¡°ÝÀÚ·á¿¡ ÀÇÇÑ ½ÇÁõºÐ¼® °úÁ¤¿¡¼´Â ´ÙÂ÷ÇÔ¼ö (polynomials) ¿Í »ï°¢ÇÔ¼ö¸¦ ¾ÆÀÍ»ý¼ºÇÔ¼ö·Î °¡Á¤ÇÏ¿© ±× ÀûÇÕ¼ºÀ» ºñ±³ÇÏ¿´´Ù ½ÇÁõºÐ¼® °á°ú´Â ´ÙÀ½°ú °°ÀÌ ¿ä¾àÇÒ ¼ö Àִ٠ù°, 1Â÷ ¹× 2Â÷ µµÇÔ¼öÀÇ °¡Ä¡°ü·Ã¼ºÀº ´ÙÂ÷ÇÔ¼öÀÇ °æ¿ì°¡ ³ô¾ÒÀ¸³ª, ¹Ì·¡ ÀÌÀÍ¿¹Ãø Ư¼ºÄ¡ÀÇ °¡Ä¡°ü·Ã¼ºÀº ¿ÀÈ÷·Á »ï°¢ÇÔ¼öÀÇ °æ¿ì°¡ ³ô¾Ò´Ù µÑ°, °¡Á¤µÈ ÀÌÀÍ»ý¼ºÇÔ¼ö¿¡ °ü°è¾øÀÌ, »õ·Î¿î ¸ðÇüÀº ÀüÅëÀû ¸ðÇü¿¡ ºñÇÏ¿© 1% À¯ÀǼöÁØ¿¡¼ À¯ÀÇÇÏ°Ô ³ôÀº ±â¾÷°¡Ä¡ ¼³¸í·ÂÀ» º¸¿´´Ù. 1Â÷ µµÇÔ¼ö ¹× ¹Ì·¡ ¿¹ »ó ÃÖ´ëÀÌÀÍÀº ±â¾÷°¡Ä¡¿Í ¾ç (+) ÀÇ »ó°ü¼ºÀ» °¡Á³À¸¸ç, 2Â÷ µµÇÔ¼ö ¹× ¹Ì·¡ ¿¹»ó ÃÖ¼ÒÀÌÀÍ, ±×¸®°í ¹Ì·¡ÀÌÀÍÀÇ º¯µ¿¼ºÀº ±â¾÷°¡Ä¡¿Í À½ (-) ÀÇ »ó°ü¼ºÀ» º¸¿´´Ù ¼Â°, »õ·Î¿î ¸ðÇüÀº ±â¾÷°¡Ä¡ ¼³¸í·Â Áõ°¡´Â ±â¾÷ÀÇ Æ¯¼º¿¡ µû¶ó Â÷À̰¡ ÀÖ¾ú´Ù. ±â¾÷ÀÇ ¿µ¾÷¼øÈ¯ÁÖ±â (operating cycle, ¼öÀͰú ºñ¿ëÀÇ ½ÃÁ¡´ëÀÀ °ü·Ã) ÀÇ ±æÀ̰¡ ±æ¼ö·Ï, ±×¸®°í ÀÌÀÍ»ý¼ºÇÔ¼öÀÇ 1Â÷ µµÇÔ¼ö °¡ À½ (-) ÀÎ ±â¾÷ (ÇöÀç ÀÌÀÍÀÌ Áõ°¡ Ãß¼¼ÀÎ ±â¾÷) Àϼö·Ï, »õ·Î¿î ¸ðÇüÀÇ ±â¾÷°¡Ä¡ ¼³¸í·Â Áõ°¡´Â À¯ÀÇÇÏ°Ô ³ô¾Ò´Ù ±×·¯³ª, ¿¹»ó°ú´Â ´Þ¸®, °ø»çÁøÇàÀ²¿¡ ÀÇÇÑ ¼öÀÍÀνÄÀÌ °¡´ÉÇÑ °Ç¼³ ¿±ÀÇ °æ¿ì, ´Ù¸¥ »ê¾÷¿¡ ºñÇÏ¿© »õ·Î¿î ¸ðÇüÀÇ ÀûÇÕµµ Áõ°¡´Â À¯ÀÇÇÏ°Ô Å©Áö ¾Ê¾Ò´Ù. ÀÌ´Â °Ç¼³¾÷ÀÇ ¿µ¾÷¼øÈ¯ÁֱⰡ ´Ù¸¥ »ê¾÷¿¡ ºñÇÏ¿© ±æ±â ¶§¹®¿¡ ³ªÅ¸³ »ó¼âÈ¿°ú·Î º¸ÀδÙ.
[´Ý±â]
¿µ¹® ÃÊ·Ï
The paper develops a continuous-time version of the equity valuation model that relies on a firm-specific earnings generating function (henceforth, EGF). The introduction of EGF allows the model (1) t...
[´õº¸±â]
The paper develops a continuous-time version of the equity valuation model that relies on a firm-specific earnings generating function (henceforth, EGF). The introduction of EGF allows the model (1) to have a continuous nature which enables valuing firms at any time when interim information about earnings becomes available, and (2) to capture effects which would never appear in the traditional model. such as the first and second denvatives of the EGF (or the
direction and speed of current earnings change), and the future variability of earnings (e g , future maximum and minimum) predicted from the EGF
In the empirical analyses based on the semi-annual earnings data of the KSE (Korea Stock Exchange) firms, we have assumed two different functional forms (i e , trigonometric functions and polynomials) as a firm's EGF, and have compared performance of the two functions The results show that, regardless of how the EGF is assumed, the new model does explain a significantly greater fraction of
the variation In firm values than the classical model at the 1% significance level The first derivative and the predicted maximum of earnings are positively
associated with the stock price level. while the second derivative, the predicted minimum and variability of earnings are negatively associated Additional analyses provide evidence that the model's performance varies across firm characteristics, such as the length of a firm's operating cycle and the sign of the EGF's first derivative, A firm which has a longer operating cycle or has a negative first derivative of the EGF makes a significantly greater increase in the adjusted R2'S than a firm with the opposite circumstances
[´Ý±â]
¸ñÂ÷
ABSTRACT
°³¿ä
¥°. Introduction
¥±. Model Development
¥². Research Design
¥³. Empirical Results
¥´. Conclusion
REFERENCES
Appendices